JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A butyrophilin family member critically inhibits T cell activation.

Journal of Immunology 2010 November 16
The costimulatory molecules in the B7-CD28 families are important in the regulation of T cell activation and tolerance. The butyrophilin family of proteins shares sequence and structure homology with B7 family molecules; however, the function of the butyrophilin family in the immune system has not been defined. In this study, we performed an analysis on multiple butyrophilin molecules and found that butyrophilin-like (BTNL)1 molecule functions to dampen T cell activation. BTNL1 mRNA was broadly expressed, but its protein was only found in APCs and not T cells. The putative receptor for BTNL1 was found on activated T cells and APCs. Also, recombinant BTNL1 molecule inhibited T cell proliferation by arresting cell cycle progression. The administration of neutralizing Abs against BTNL1 provoked enhanced T cell activation and exacerbated disease in autoimmune and asthma mouse models. Therefore, BTNL1 is a critical inhibitory molecule for T cell activation and immune diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app