JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Noninvasive cardiac output determination for children by the inert gas-rebreathing method.

Pediatric Cardiology 2010 November
Standard methods for determination of cardiac output (CO) are either invasive or technically demanding. Measurement of CO by the inert gas-rebreathing (IGR) method, applied successfully in adults, uses a low-concentration mixture of an inert and a blood-soluble gas, respectively. This study tested the feasibility of this method for determining CO during exercise for pediatric patients with complete congenital atrioventricular block (CCAVB) stimulated with a VVI pacemaker. In this study, 5 CCAVB patients (age 9.2-17.4 years) were compared with 10 healthy age-matched boys and girls. Testing was performed with the Innocor system. The patients were instructed to breathe the test gas from a closed system. Pulmonary blood flow was calculated according to the washout of the soluble gas component. During standardized treadmill testing, CO was determined at three defined levels. The CO measurements were successful for all the study participants. The patients reached a lower peak CO than the control subjects (5.9 l/min/m(2) vs 7.3 [boys] and 7.2 [girls]). The stroke volume increase under exercise also was reduced in the patients compared with the control subjects. The feasibility of the IGR method for exercise CO testing in children was documented. Application of the IGR method for children requires careful instruction of the patients and appears restricted to subjects older than 8 years. The method offers new insights into mechanisms of cardiovascular adaptation in children with congenital heart disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app