Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Evaluation of the enantioselectivity of glycogen-based dual chiral selector systems towards basic drugs in capillary electrophoresis.

Several chiral reagents including cyclodextrins (CDs) and derivatives, crown ethers, proteins, chiral surfactants and polymers have been involved in dual selector systems for enantioseparation of a series of chiral compounds by capillary electrophoresis (CE). In comparison to the chiral reagents above-mentioned, there is no report concerning the use of polysaccharides in dual chiral CE system. In this paper we first investigate the enantioselectivity of polysaccharide-based dual selector systems towards some chiral drugs. During our recent work, glycogen belonging to the class of branched polysaccharides has been used as a novel chiral selector in CE. In this study, three glycogen-based dual chiral CE systems have been established for enantiomeric separations of several racemic basic drugs consisting of duloxetine, cetirizine, citalopram, sulconazole, laudanosine, amlodipine, propranolol, atenolol and nefopam. These three dual systems combined glycogen (neutral polysaccharide) with chondroitin sulfate A (CSA, ionic polysaccharide), β-CD and HP-β-CD, respectively. It was found that the dual system of glycogen/CSA exhibited good enantioselective properties toward the tested drugs. More importantly, compared to the single selector systems, synergistic effect was observed when glycogen was used with CSA for most of the analytes. This indicated the enhancement of enantioseparation observed for these analytes in glycogen/CSA system might be due to some favorable interaction effects between glycogen and CSA. Moreover, in order to evaluate the stereoselectivity of glycogen/CSA, the influences of buffer pH and selector concentration on enantioseparation of the studied drugs were also investigated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app