JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Role of the PPAR-γ system in normal and tumoral pituitary corticotropic cells and adrenal cells.

PPAR-γ is a member of the nuclear hormone receptor superfamily of transcription factors, whose thiazolidinedione ligands (TZD) have been recently demonstrated to also possess anticancer properties in addition to their well-known insulin-sensitizer and glucose/lipid regulation activity. In this minireview, we summarize the current knowledge on PPAR-γ in normal and tumoral corticotropic pituitary and adrenal cells. The receptor expression has been shown in ACTH-secreting cells in both normal and adenomal pituitary as well as in normal and tumor adrenal cortex. Preclinical studies conducted both in vitro on tumor cells and in vivo on xenograft tumor models obtained by subcutaneous injection of cancer cells have evidenced the anticancer properties of TZD, in particular rosiglitazone (RGZ) and pioglitazone (PIO). In both pituitary and adrenocortical cancer, RGZ treatment results in inhibition of cell proliferation, through G0/G1 cell-cycle arrest and induction of cell apoptosis, leading to significant inhibition of tumor growth in the xenograft tumor models. In addition, since RGZ can reduce ACTH and corticosterone secretion in mouse corticotropic pituitary tumors, both RGZ and PIO have been used in the treatment of Cushing's disease with variable but generally unsatisfactory results. Discrepancies in the antitumor effects of TZD observed between successful preclinical and unsuccessful clinical studies may be particularly due to differences in treatment duration and doses used.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app