Add like
Add dislike
Add to saved papers

Effects of immunomodulatory substances on phagocytosis of abeta(1-42) by human microglia.

Glial activation and increased inflammation characterize neuropathology in Alzheimer's disease (AD). The aim was to develop a model for studying phagocytosis of beta-amyloid (Abeta) peptide by human microglia and to test effects thereupon by immunomodulatory substances. Human CHME3 microglia showed intracellular Abeta(1-42) colocalized with lysosome-associated membrane protein-2, indicating phagocytosis. This was increased by interferon-gamma, and to a lesser degree with Protollin, a proteosome-based adjuvant. Secretion of brain-derived neurotrophic factor (BDNF) was decreased by Abeta(1-42) and by interferon-gamma and interleukin-1beta. These cytokines, but not Abeta(1-42), stimulated interleukin-6 release. Microglia which phagocytosed Abeta(1-42) exhibited a higher degree of expression of interleukin-1 receptor type I and inducible nitric oxide synthase. In conclusion, we show that human microglia are able to phagocytose Abeta(1-42) and that this is associated with expression of inflammatory markers. Abeta(1-42) and interferon-gamma decreased BDNF secretion suggesting a new neuropathological role for Abeta(1-42) and the inflammation accompanying AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app