JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
Add like
Add dislike
Add to saved papers

Dietary macronutrients and feeding frequency affect fasting and postprandial concentrations of hormones involved in appetite regulation in adult dogs.

Identifying dietary effects on appetite-regulating hormones will enhance our understanding of appetite control. Before complex diets are tested, effects of specific macronutrients or feeding frequency should be identified. The objectives of this nutrition study were to identify differences in endocrine response with feeding frequency (Exp. 1) and after a single dose of a sole macronutrient (Exp. 2). A control diet supplying similar energy content from carbohydrate, protein, and fat was fed to maintain ideal BW. In Exp. 1, 8 healthy adult (1.9 ± 0.1 yr old) female hound cross dogs with an average BW of 22 kg (4.8 ± 0.8 BCS based on a 9-point scale) were randomly allotted to 1 of 2 treatments (fed once or twice daily) in a crossover design. After a 14-d adaptation period, a blood sample was taken (10 mL) before feeding, and samples were collected every 2 h postprandially for 24 h. In Exp. 2, dogs were randomly allotted to 1 of 4 treatments in a 4 × 4 Latin square design. After a 6-d adaptation period, the normal meal on d 7 was replaced with a bolus of maltodextrin (50 g in water; CARB), canned chicken (50 g; PROT), lard (25 g; fat), or water (200 mL). A blood sample (10 mL) was taken at 0, 30, 60, 90, 120, 150, 180, 240, 300, and 360 min postprandial. Total ghrelin, active glucagon-like peptide-1 (GLP-1), insulin, and glucose concentrations were measured. Data were analyzed to compare changes from baseline and area under the curve (AUC) among treatments. In Exp. 1, all hormones were quite variable throughout the day, with a few insulin and GLP-1 differences because of feeding frequency. In Exp. 2, CARB produced a marked peak in glucose and insulin concentrations compared with PROT, fat, or water, resulting in increased glucose (P < 0.001) and insulin (P = 0.07) incremental AUC values. On the other hand, the fat treatment led to increased GLP-1 concentrations over time. Ghrelin AUC was not different among treatments. The circulating hormone data were highly variable and indicate that diet plays a role in insulin and GLP-1 secretion, but more research is required to elucidate these effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app