Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

The M1 muscarinic receptor allosteric agonists AC-42 and 1-[1'-(2-methylbenzyl)-1,4'-bipiperidin-4-yl]-1,3-dihydro-2H-benzimidazol-2-one bind to a unique site distinct from the acetylcholine orthosteric site.

Activation of M1 muscarinic receptors occurs through orthosteric and allosteric binding sites. To identify critical residues, site-directed mutagenesis and chimeric receptors were evaluated in functional calcium mobilization assays to compare orthosteric agonists, acetylcholine and xanomeline, M1 allosteric agonists AC-42 (4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine hydrogen chloride), TBPB (1-[1'-(2-methylbenzyl)-1,4'-bipiperidin-4-yl]-1,3-dihydro-2H-benzimidazol-2-one), and the clozapine metabolite N-desmethylclozapine. A minimal epitope has been defined for AC-42 that comprises the first 45 amino acids, the third extracellular loop, and seventh transmembrane domain (Mol Pharmacol 61:1297-1302, 2002). Using chimeric M1 and M3 receptor constructs, the AC-42 minimal epitope has been extended to also include transmembrane II. Phe77 was identified as a critical residue for maintenance of AC-42 and TBPB agonist activity. In contrast, the functional activity of N-desmethylclozapine did not require Phe77. To further map the binding site of AC-42, TBPB, and N-desmethylclozapine, point mutations previously reported to affect activities of M1 orthosteric agonists and antagonists were studied. Docking into an M1 receptor homology model revealed that AC-42 and TBPB share a similar binding pocket adjacent to the orthosteric binding site at the opposite face of Trp101. In contrast, the activity of N-desmethylclozapine was generally unaffected by the point mutations studied, and the docking indicated that N-desmethylclozapine bound to a site distinct from AC-42 and TBPB overlapping with the orthosteric site. These results suggest that structurally diverse allosteric agonists AC-42, TBPB, and N-desmethylclozapine may interact with different subsets of residues, supporting the hypothesis that M1 receptor activation can occur through at least three different binding domains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app