Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Surrogate MR markers of response to chemo- or radiotherapy in association with co-treatments: a retrospective analysis of multi-modal studies.

The study of magnetic resonance (MR) markers over the past decade has provided evidence that the tumor microenvironnement and hemodynamics play a major role in determining tumor response to therapy. The aim of the present work is to predict and monitor the efficacy of co-treatments to radio- and chemotherapy by noninvasive MR imaging. Ten different co-treatments were involved in this retrospective analysis of our previously published data, including NO-mediated co-treatments (insulin and isosorbide dinitrate), anti-inflammatory drugs (hydrocortisone, NS-398), anti-angiogenic agents (thalidomide, SU5416 and ZD6474), a vasoactive agent (xanthinol nicotinate), botulinum toxin and carbogen breathing. Dynamic contrast enhanced (DCE) MRI, intrinsic susceptibility-weighted (BOLD) MRI and electronic paramagnetic resonance (EPR) oximetry all reflect tumor microenvironment hemodynamic variables that are known to influence tumor response. Eight MR-derived parameters (markers) were tested for their ability to predict therapeutic outcome (factor of increase in regrowth delay) in experimental tumor models (TLT and FSaII) after radiation therapy and/or chemotherapy with cyclophosphamide, namely tumor pO₂ and O₂ consumption rate (using EPR oximetry); tumor blood flow and permeability, i.e. V(p), K(trans), K(ep) and percentage of perfused vessels (using DCE-MRI); and BOLD signal intensity and R₂* (using functional MRI). This multi-modal comparison of co-treatment efficacy points out the limitations of each MR marker and identifies in vivo pO₂ as a relevant endpoint for radiation therapy. DCE parameters (V(p) and K(ep)) were identified as a relevant endpoints for cyclophosphamide chemotherapy in our tumor models. This study helps qualify relevant imaging endpoints in the preclinical setting of cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app