Add like
Add dislike
Add to saved papers

Synthetic siRNA targeting the breakpoint of EWS/Fli-1 inhibits growth of Ewing sarcoma xenografts in a mouse model.

The EWS/Fli-1 fusion gene, a product of the translocation t(11;22, q24;q12), is detected in 85% of Ewing sarcomas and primitive neuroectodermal tumors. It is thought to be a transcriptional activator that plays a significant role in tumorigenesis. In this study, we developed a novel EWS/Fli-1 blockade system using RNA interference and tested its application for inhibiting the proliferation of Ewing sarcoma cells in vitro and the treatment of mouse tumor xenografts in vivo. We designed and synthesized a small interfering RNA (siRNA) possessing an aromatic compound at the 3'-end targeting the breakpoint of EWS/Fli-1. As this sequence is present only in tumor cells, it is a potentially relevant target. We found that the siRNA targeting EWS/Fli-1 significantly suppressed the expression of EWS/Fli-1 protein sequence specifically and also reduced the expression of c-Myc protein in Ewing sarcoma cells. We further demonstrated that inhibition of EWS/Fli-1 expression efficiently inhibited the proliferation of the transfected cells but did not induce apoptotic cell death. In addition, the siRNA possessing the aromatic compound at the 3'-end was more resistant to nucleolytic degradation than the unmodified siRNA. Administration of the siRNA with atelocollagen significantly inhibited the tumor growth of TC-135, a Ewing sarcoma cell line, which had been subcutaneously xenografted into mice. Moreover, modification of the 3'-end with an aromatic compound improved its efficiency in vivo. Our data suggest that specific downregulation of EWS/Fli-1 by RNA interference is a possible approach for the treatment of Ewing sarcoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app