JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterization of axon guidance cue sensitivity of human embryonic stem cell-derived dopaminergic neurons.

Dopaminergic neurons derived from human embryonic stem cells will be useful in future transplantation studies of Parkinson's disease patients. As newly generated neurons must integrate and reconnect with host cells, the ability of hESC-derived neurons to respond to axon guidance cues will be critical. Both Netrin-1 and Slit-2 guide rodent embryonic dopaminergic (DA) neurons in vitro and in vivo, but very little is known about the response of hESC-derived DA neurons to any axonal guidance cues. Here we examined the ability of Netrin-1 and Slit-2 to affect human ESC DA axons in vitro. hESC DA neurons mature over time in culture with the developmental profile of DA neurons in vivo, including expression of the DA neuron markers FoxA2, En-1 and Nurr-1, and receptors for both Netrin and Slit. hESC DA neurons respond to exogenous Netrin-1 and Slit-2, showing an increased responsiveness to Netrin-1 as the neurons mature in culture. These responses were maintained in the presence of pro-inflammatory cytokines that might be encountered in the diseased brain. These studies are the first to evaluate and confirm that suitably matured human ES-derived DA neurons can respond appropriately to axon guidance cues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app