In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Casein kinase 1delta activates human recombinant deoxycytidine kinase by Ser-74 phosphorylation, but is not involved in the in vivo regulation of its activity.

Deoxycytidine kinase (dCK) is a key enzyme in the salvage of deoxynucleosides and in the activation of several anticancer and antiviral nucleoside analogues. We recently showed that dCK was activated in vivo by phosphorylation of Ser-74. However, the protein kinase responsible was not identified. Ser-74 is located downstream a Glu-rich region, presenting similarity with the consensus phosphorylation motif of casein kinase 1 (CKI), and particularly of CKI delta. We showed that recombinant CKI delta phosphorylated several residues of bacterially overexpressed dCK: Ser-74, but also Ser-11, Ser-15, and Thr-72. Phosphorylation of dCK by CKI delta correlated with increased activity reaching at least 4-fold. Site-directed mutagenesis demonstrated that only Ser-74 phosphorylation was involved in dCK activation by CKI delta, strengthening the key role of this residue in the control of dCK activity. However, neither CKI delta inhibitors nor CKI delta siRNA-mediated knock-down modified Ser-74 phosphorylation or dCK activity in cultured cells. Moreover, these approaches did not prevent dCK activation induced by treatments enhancing Ser-74 phosphorylation. Taken together, the data preclude a role of CKI delta in the regulation of dCK activity in vivo. Nevertheless, phosphorylation of dCK by CKI delta could be a useful tool for elucidating the influence of Ser-74 phosphorylation on the structure-activity relationships in the enzyme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app