Add like
Add dislike
Add to saved papers

Effect of antenatal betamethasone administration on neonatal cardiac autonomic balance.

Pediatric Research 2010 October
Beneficial effects of antenatal glucocorticoid treatment in pregnancies at risk for preterm delivery may entail long-term consequences for the establishment of sympathoadrenergic system balance. We analyzed the cardiac autonomic system activity in neonates with a single course of antenatal betamethasone (2 × 12 mg) treatment by calculating heart rate variability (HRV) time-domain parameters from 24 h ECG recordings and short-term frequency-domain parameters during infant active and resting states. In addition, resting and challenged salivary α-amylase levels were measured in 23 betamethasone-exposed neonates and compared with controls. Indicators for overall HRV (SDNN: p = 0.258; triangular index: p = 0.179) and sympathovagal balance [low- to high-frequency power (LF/HF): p = 0.82 (resting state)] were not significantly different in neonates of the betamethasone treatment group. Parameters mostly influenced by sympathetic activity [SD of the average of valid NN intervals (SDANN): p = 0.184 and SDs of all NN intervals (SDNNi): p = 0.784] and vagal tone [RMSSD: p = 1.0; NN50: p = 0.852; HF: p = 0.785 (resting state)] were unaltered. Resting α-amylase levels were not significantly different in the betamethasone treatment group (p = 0.304); however, α-amylase release after a neonatal challenge was slightly reduced (p = 0.045). Thus, cardiac autonomic balance seems to be preserved in neonates exposed to a single course of antenatal betamethasone treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app