Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Polycationic nanoparticles: (1) synthesis of a polylysine-MION conjugate and its application in labeling fibroblasts.

Nanoparticles are increasingly used to label cells to track them by imaging or to quantify them in vivo. However, normal cellular uptake mechanisms are inadequate to load cells with tracking label. We propose a simple method to coat nanoparticles, such as monocrystalline iron oxide nanoparticle (MION), with the transfection agent polylysine in order to facilitate rapid, uniform, and heavy labeling of fibroblasts. The method is based on commercially available reagents, requires no more than 1 h of laboratory contact time, and can be accomplished safely without a chemical hood. A suspension of MION was treated by addition of solid sodium periodate to oxidize glucose residues of dextran and introduced aldehyde groups to the dextran coat surrounding MION's crystalline magnetite core. After a 30-min incubation to effect oxidation, unreacted periodate was quenched with glycerol. The preparation was dialyzed to remove reactants and diluted to a final concentration of 2 mg Fe/ml. Poly-L-lysine was added to the oxidized MION (MION-A) to form reversible covalent Schiff base linkages. The resulting conjugate, a polylysine iron oxide nano-particle is abbreviated PLION. NIH3T3 fibroblasts labeled with either MION, MION-A, or MION plus polylysine showed minimal uptake of iron while cells labeled with PLION acquired a brown hue demonstrating strong labeling with iron. Microscopic assessment of iron labeling was confirmed using Prussian blue staining. In some cells, the concentration of iron was sufficiently high and localized to suggest association with cytoplasmic vacuoles. The nucleus of the cell was not labeled. Cell labeling increased when the ratio of polylysine to MION increased and with increasing amount of PLION.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app