JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Site-directed mutagenesis and saturation mutagenesis for the functional study of transcription factors involved in plant secondary metabolite biosynthesis.

Regulation of gene expression is largely coordinated by a complex network of interactions between transcription factors (TFs), co-factors, and their cognate cis-regulatory elements in the genome. TFs are multidomain proteins that arise evolutionarily through protein domain shuffling. The modular nature of TFs has led to the idea that specific modules of TFs can be re-designed to regulate desired gene(s) through protein engineering. Utilization of designer TFs for the control of metabolic pathways has emerged as an effective approach for metabolic engineering. We are interested in engineering the basic helix-loop-helix (bHLH, Myc-type) transcription factors. Using site-directed and saturation mutagenesis, in combination with efficient and high-throughput screening systems, we have identified and characterized several amino acid residues critical for higher transactivation activity of a Myc-like bHLH transcription factor involved in anthocyanin biosynthetic pathway in plants. Site-directed and saturation mutagenesis should be generally applicable to engineering of all TFs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app