Add like
Add dislike
Add to saved papers

Comparative transcript profiling by cDNA-AFLP reveals similar patterns of Avr4/Cf-4- and Avr9/Cf-9-dependent defence gene expression.

SUMMARY: Tomato Cf genes confer resistance to the fungal pathogen Cladosporium fulvum. Although the Cf-4 and Cf-9 proteins are very similar, the Cf-4- and Cf-9-dependent hypersensitive responses (HRs) are distinct in cell death pattern, intensity and sensitivity to environmental conditions. To investigate the mechanism leading to these differences, comparative transcript profiling of Avr4/Cf-4- and Avr9/Cf-9-dependent defence gene expression was performed. To do this, cDNA-AFLP analysis was conducted on Avr/Cf tomato seedlings undergoing early HR. Both Avr4/Cf-4 and Avr9/Cf-9 signalling elicited the same spectrum of genes, referred to here as Avr/Cf-elicited (ACE) genes. Of approximately 25 000 transcript-derived fragments (TDFs), 367 (1.5%) showed significant differential expression between HR(+) and HR(-) seedlings (either Avr4/Cf-4- or Avr9/Cf-9-dependent). However, 42.8% of the ACE TDFs (157/367 in total) showed quantitatively different expression in the two types of HR(+) seedlings. The majority of these (135/157, 86.0%) displayed significantly greater differential expression (either induced or repressed) in Avr4/Cf-4 HR(+) seedlings than in Avr9/Cf-9 HR(+) seedlings. Our results are consistent with the previous observation that Avr4/Cf-4-dependent HR is more severe than Avr9/Cf-9-dependent HR, and indicate that the distinction between Avr4/Cf-4- and Avr9/Cf-9-dependent HR is most probably a result of events upstream of the defence responses. Sequencing of 189 ACE fragments identified genes associated with: defence and resistance (33.3%), signal transduction (7.4%), HR and cell death (5.3%), transcriptional regulation and post-transcriptional modification (4.3%). Expression data revealed that defence response, respiration and biological oxidation are strongly induced while photosynthesis is severely repressed in the HR(+) seedlings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app