Add like
Add dislike
Add to saved papers

Biomechanical evaluation of an atlantoaxial lateral mass fusion cage with C1-C2 pedicle fixation.

Spine 2010 June 16
STUDY DESIGN: A biomechanical testing protocol was used to evaluate atlantoaxial fixation techniques in a human cadaveric model.

OBJECTIVE: To compare in vitro biomechanics of atlantoaxial lateral mass fusion cage combined with C1-C2 pedicle screw technique with those of C1-C2 pedicle screw technique alone and C1-C2 transarticular screws combined with Gallie wires.

SUMMARY OF BACKGROUND DATA: An atlantoaxial lateral mass fusion cage was designed, knowing that the cage, when rigidly combined with C1-C2 pedicle screws, could offer other fusion spots for atlantoaxial stabilization in cases when the posterior arch of the atlas is absent or removed for decompression and a Gallie fixation is impossible. No comparative in vitro biomechanical test has been conducted previously to evaluate the feasibility of this method.

METHODS: Anatomic measurements of the atlantoaxial lateral masses were taken using computed tomography in normal human subjects. Six fresh-frozen human cadaveric cervical spines (C0-C4) were used in the biomechanical study. Specimens were tested in their intact condition, after destabilization via transverse-alar-apical ligament disruption, and after implantation of 3 fixation constructs: (1) transarticular screws combined with Gallie wires, (2) C1-C2 pedicle screws, and (3) atlantoaxial lateral mass fusion cage combined with C1-C2 pedicle screws. Pure moment loading up to 1.5 Nm in flexion/extension, right-left lateral bending, and right-left axial rotation was applied to the occiput, and relative intervertebral rotations were determined using stereophotogrammetry. Range of motion for the intact, destabilized, and 3 fixation scenarios were determined.

RESULTS: The anatomic data indicated that feasible cage design were in 3 sizes: 11/8, 12/9, and 13/10 mm for length/width, and 3.5, 4, and 4.5 mm for height. The biomechanical data indicated that transverse-alar-apical ligament disruption significantly increased C1-C2 motion for all directions. All the 3 fixation techniques significantly reduced motion compared with the intact and destabilized cases. There were no statistically significant differences among the 3 fixation techniques.

CONCLUSION: The biomechanical study indicated that, contrary to expectation, addition of a cage did not increase the stability compared with C1-C2 pedicle screw alone. However, the C1 + C2 + Cage technique may be a viable alternative for atlantoaxial stabilization when the posterior arch of the atlas is absent or removed for decompression and a Gallie fixation is impossible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app