JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
Add like
Add dislike
Add to saved papers

Effects of low-intensity walk training with restricted leg blood flow on muscle strength and aerobic capacity in older adults.

PURPOSE: Slow-walk training combined with restricted leg muscular blood flow (KAATSU) produces muscle hypertrophy and strength gains in young men, which may lead to increased aerobic capacity and functional fitness. The purpose of this study was to investigate the effects of walk training combined with KAATSU on muscle size, strength, and functional ability, as well as aerobic capacity, in older participants.

METHODS: A total of 19 active men and women, aged 60 to 78 years, were randomized into either a KAATSU-walk training group (n = 11, K-walk) or a nonexercising control group (n = 8, control). The K-walk group performed 20-minute treadmill walking (67 m/min), 5 days/wk for 6 weeks.

RESULTS: Isometric (11%) and isokinetic (7%-16%) knee extension and flexion torques, muscle-bone cross-sectional area (5.8% and 5.1% for thigh and lower leg, respectively), as well as ultrasound-estimated skeletal muscle mass (6.0% and 10.7% for total and thigh, respectively) increased (P< .05) in the K-walk group but not in the control group. Functional ability also increased significantly only in the K-walk group (P < .05); however, there was no change in the estimated peak oxygen uptake(absolute and relative to body mass) for either group.

CONCLUSION: The results of the current study indicate that 6 weeks of KAATSU-walk training did not simultaneously improve cardiovascular and muscular fitness of older participants. However, it significantly increased muscular size and strength as well as functional ability of active older men and women.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app