Add like
Add dislike
Add to saved papers

Comparison of prostanoid forming capacity of neuronal and astroglial cells in primary cultures.

Prostaglandin (PG) and thromboxane (TX) biosynthesis in primary neuronal and astroglial cell cultures was studied. Cultures obtained from fetal (15-16 days old) and neonatal rat brain hemispheres were characterized by chemical and immunocytochemical staining techniques as predominantly neurons or mature and immature astrocytes, respectively. Six-day old neuronal cell cultures grown in the presence of cytosine arabinoside (2 ?M) from the day 3 onwards were contaminated up to 10% with glioblasts. In astroglial cultures up to 3% of the cells were postively stained with a marker for oligodendroglial cells. Fibroblast contamination was below 1% in both cultures. Prostanoid formation (measured by specific radioimmunoassays) in 6-day old neuronal cell cultures was low (sum of the amount of PGs and TX formed: 1.16 +/- 0.17 (ng/mg protein/15 min) as compared to 14-day old cultured astroglial cells: 21.27 +/- 2.53 (ng/mg protein/15 min). Also the pattern of prostanoids formed was different in neuronal (PGD(2) ? PGF(2?) > TXB(2) ? PGE(2)) and astroglial cells (PGD(2) > TXB(2) ? PGF(2?) ? PGE(2) ? 6-ketoPGF(1?)). Preincubation with arachidonic acid (1 ?g/ml) did not affect prostanoid formation in both cultures, whereas it was stimulated 4-6-fold by addition of the calcium ionophore A23187 (1 ?M). These results, although found on cultured neuronal and glial cells of different stages of development, support the view that astroglial cells might play a crucial role in brain prostanoid synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app