Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Regulation of decidualization, interleukin-11 and interleukin-15 by homeobox A 10 in endometrial stromal cells.

Cytokine production by the endometrial stromal and decidual cells is essential for successful differentiation of the endometrial stromal cells and uterine leukocytes to sustain pregnancy. Interleukin-11 and -15 (IL-11 and IL-15) secreted by the stromal and decidual cells are two key modulators of the process of decidualization and natural killer cell (NK) activity in the uterus and are essential for pregnancy. However, limited information exists on the maternal factors that regulate the production of these cytokines by the stromal cells. In this study, we investigated the role of homeobox A10 (HOXA10) in the regulation of expression of genes encoding the decidualization markers insulin-like growth factor binding protein-1 (IGFBP1), prolactin and the cytokines IL-11 and IL-15 by endometrial stromal and decidual cells in vitro. The results demonstrated that the expression of IGFBP1, Prolactin (PRL), HOXA10, IL11, and IL15 are co-regulated during steroid hormone-mediated decidualization of human endometrial stromal cells in vitro. In the predecidual cells, downregulation of HOXA10 by siRNA suppresses IGFBP1 and IL15, but increases IL11 expression. In the decidualized cells, knocking down HOXA10 inhibits IGFBP1 and PRL expression but elevates the expression of IL11 and IL15. In addition, our data also demonstrate that transient inhibition of HOXA10 expression in the predecidual cells does not influence its ability to subsequently decidualize or affect cytokine expression, suggesting that steroid hormone-mediated decidualization and cytokine production in vitro does not require HOXA10 preconditioning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app