Comparative Study
English Abstract
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

[Antihypertrophic effect of dihydropyridines calcium channel blockers is dependent on their potential of blocking N-type calcium channel].

OBJECTIVE: To compare the effects of amlodipine, benidipine and nifedipine on myocardial hypertrophy and evaluate the underlying mechanism.

METHODS: Myocardial hypertrophy model was created by transverse aortic constriction (TAC) in C57 BL/6 mice, and plasma catecholamine concentrations were measured 7 days after surgery to confirm the sympathetic activation. The 3 drugs were administered in TAC mice for 7 days and cardiac hypertrophy was evaluated according to the heart-to-body weight ratio (HW/BW). Effects of those drugs on the protein synthesis stimulated by phenylephrine in cultured neonatal cardiac myocytes were also examined.

RESULTS: HW/BW and plasma concentrations of catecholamine were significantly increased in TAC mice one week after surgery in comparison with to sham-operated mice. One week after TAC, the HW/BW ratio was significantly lower in the amolodipine but not nifedipine-treated group than in the TAC group. Administration of nifedipine via minipump infusion for one week did not decrease HW/BW ratio. Treatment with amlodpine or benidipine, but not nifedipine, decreased the neonatal rat myocyte protein synthesis induced by phenylephrine stimulation.

CONCLUSION: Antihypertrophic effect of DHEs on myocardium is dependent on their potential of blocking N-type calcium channel, and the underlying mechanism involves the sympathetic inhibition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app