JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cannabinoid CB1 receptors are early downregulated followed by a further upregulation in the basal ganglia of mice with deletion of specific park genes.

This study was designed to examine the type of changes experienced by the CB1 receptor, a key element of the cannabinoid signaling system, in the basal ganglia of different mouse mutants generated by deletion of specific genes associated with the development of Parkinson's disease in humans [PARK1 (alpha-synuclein), PARK2 (parkin) or PARK6 (PINK1)]. We observed that CB1 receptor-mRNA levels were significantly reduced in the caudate-putamen in the three models under examination when animals were analyzed at early phases (< or = 12 months of age). This decrease was, in general, associated with a reduction in CB1 receptor binding in the substantia nigra and the globus pallidus, particularly in the case of alpha-synuclein-deficient mice. By contrast, both parameters, mRNA levels and binding for the CB1 receptor, showed an elevation in the same areas when animals were analyzed at older ages, mainly in the case of the CB1 receptor binding in the substantia nigra. In summary, our data revealed the existence of a biphasic response for CB1 receptors, with losses at early phases, when dopaminergic dysfunction is possibly the major event that takes place, followed by upregulatory responses at advanced phases characterized by the occurrence of evident nigrostriatal pathology including neuronal death in some cases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app