Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Measurement of the distribution of aerosols among mouse lobes by fluorescent imaging.

Lung samples were prepared to investigate the perturbing effects of light absorption for quantifying the fluorescence signal of aluminum phthalocyanine tetrasulfonic acid (AlPCS). Standard solutions of known concentration and depth were imaged with different exposure times and analyzed. The intensity was found to be a linear function of concentration, depth, exposure time, and area. Mice were exposed to an aerosol of AlPCS with a mass median aerodynamic diameter of 390 nm and geometric standard deviation of 1.8. Images of intact lung lobes and lung homogenates were obtained and then analyzed to allow quantifying the concentration of AlPCS among the lung lobes and trachea. For the distribution of aerosols, the results indicate that the concentration was uniform among the different lobes. Combining the quantitative analysis of the concentration with image analysis of the area/thickness, the mass deposited in each lobe was readily determined. This approach provides a quantitative means to determine the selectivity of drug delivery to mouse lower respiratory tract.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app