Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Bacterial translocation across ePTFE vascular graft surfaces.

OBJECTIVES: Vascular graft infections arise from bacterial colonization of either the external or internal graft surfaces. We assessed whether methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli could translocate through pores of ePTFE grafts.

METHODS: To assess translocation from the internal to the external surface, we placed 10(5) cfu of bacterial suspension inside ePTFE graft segments and suspended them in sterile broth for 72 h. To assess translocation from the external to the internal surface, we placed sterile broth inside ePTFE segments, and incubated them for 72 h in a bacterial suspension (10(5) cfu/mL). At 72 h, in addition to culturing the sterile broth and bacterial suspensions, the external and internal surfaces were first qualitatively cultured separately and then quantitatively cultured by sonication.

RESULTS: At 72 h, the sterile broth remained sterile. The bacterial suspensions yielded 10(7)-10(9) cfu/mL. Graft cultures indicated that colonization of one surface with either organism did not result in bacterial translocation to the other surface. Quantitative bacterial counts of the external vs. internal surfaces were significantly different (p < 0.01).

CONCLUSIONS: MRSA and E. coli do not translocate across ePTFE graft surfaces. These in-vitro findings help elucidate the pathogenesis of graft infections and prompt conduction of validation studies in-vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app