Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Interactions of hemin with model erythrocyte membranes.

To address the interactions of hemin with phospholipid bilayers, we introduce hemin to a solution of dimyristoylphosphatidylcholine (DMPC), a long chain phospholipid, and 3-(cholamidopropyl)(dimethylammonio)-2-hydroxy-1-propanesulfonate (CHAPSO), a detergent, in which vesicles form at around 37 degrees C. We show that vesicles composed of DMPC/CHAPSO form and grow, following a mechanism that does not trap solution and excludes larger solutes, such as hemin, from the vesicle interior. The existence of a limited number of patches of likely 2D crystalline hemin embedded in the phospholipid bilayer suggests that this layer is saturated with hemin molecules. We show that despite this saturation, even after prolonged contact with hemin-containing solution outside the vesicles, hemin is not released on the other side of the membrane; i.e., the phospholipid bilayer is impermeable to hemin. Comparison of the properties of the model membrane to those of the erythrocyte membrane suggests that the latter might also be impermeable to hemin and, given the absence of pores suitable to hemin in the erythrocyte membranes, that hemin might accumulate in erythrocytes after its release due to hemoglobin instability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app