Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Residues contributing to the Na(+)-binding pocket of the SLC24 Na(+)/Ca(2+)-K(+) Exchanger NCKX2.

Na(+)/Ca(2+)-K(+) exchangers (NCKX; gene family SLC24) are plasma membrane Ca(2+) transporters that mediate the extrusion of one Ca(2+) ion and one K(+) ion in exchange for four Na(+) ions. NCKX is modeled to have two sets of five transmembrane segments separated by a large cytosolic loop; within each set of transmembrane segments are regions of internal symmetry termed alpha(1) and alpha(2) repeats. The central residues that are important for Ca(2+) and K(+) liganding and transport have been identified in NCKX2, and they comprise three central acidic residues, Glu(188) in alpha(1) and Asp(548) and Asp(575) in alpha(2), as well as Ser/Thr residues one-helical turn away from these residues. In this study, we have scanned through more than 100 single-residue substitutions of NCKX2 for shifts in Na(+) affinity using a fluorescence assay to monitor changes in free Ca(2+) in HEK293 cells treated with gramicidin to control intracellular Na(+). We have identified 31 residues that, when substituted, result in shifts in Na(+) affinity, either toward higher or lower K(m) values when compared with wild type NCKX2 (K(m) for Na(+) 58 mm). These residues include the central acidic residues Glu(188), Asp(548), and Asp(575), and their neighboring residues in alpha(1) and alpha(2), in addition to a number of newly investigated residues in transmembrane segment 3. Our results relate the identification of residues important for Na(+) transport in this study to those previously identified as important in the counter-transport of Ca(2+) and K(+), lending support to the alternating access model of transmembrane transport.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app