JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Blockade of programmed death ligand 1 enhances the therapeutic efficacy of combination immunotherapy against melanoma.

Inhibition of antitumor T cell responses can be mediated by the productive interaction between the programmed death-1 (PD-1) receptor on T cells and its ligand PD-L1. PD-L1 is highly expressed on both murine bone marrow-derived dendritic cells (DCs) and B16 melanoma. In this study, in vitro blockade of PD-L1 interaction on DCs led to enhanced IFN-gamma production and cytotoxicity by Ag-specific T cells. In vivo, the systemic administration of anti-PD-L1 Ab plus melanoma peptide-pulsed DCs resulted in a higher number of melanoma peptide-specific CD8(+) T cells, but this combination was insufficient to delay the growth of established B16 melanoma. Although the addition of 600 rad of total body irradiation delayed tumor growth, further adoptive transfer of Ag-specific CD8(+) T cells was needed to achieve tumor regression and long-term survival of the treated mice. Lymphopenic mice treated with anti-PD-L1 Ab demonstrated increased activation and persistence of adoptively transferred T cells, including a higher number of CD8(+) T cells infiltrating the tumor mass. Together, these studies support the blocking of PD-L1 signaling as a means to enhance combined immunotherapy approaches against melanoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app