Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fast volumetric spatial-spectral MR imaging of hyperpolarized 13C-labeled compounds using multiple echo 3D bSSFP.

PURPOSE: The goal of this work was to develop a fast 3D chemical shift imaging technique for the noninvasive measurement of hyperpolarized (13)C-labeled substrates and metabolic products at low concentration.

MATERIALS AND METHODS: Multiple echo 3D balanced steady state magnetic resonance imaging (ME-3DbSSFP) was performed in vitro on a syringe containing hyperpolarized [1,3,3-2H3; 1-(13)C]2-hydroxyethylpropionate (HEP) adjacent to a (13)C-enriched acetate phantom, and in vivo on a rat before and after intravenous injection of hyperpolarized HEP at 1.5 T. Chemical shift images of the hyperpolarized HEP were derived from the multiple echo data by Fourier transformation along the echoes on a voxel by voxel basis for each slice of the 3D data set.

RESULTS: ME-3DbSSFP imaging was able to provide chemical shift images of hyperpolarized HEP in vitro, and in a rat with isotropic 7-mm spatial resolution, 93 Hz spectral resolution and 16-s temporal resolution for a period greater than 45 s.

CONCLUSION: Multiple echo 3D bSSFP imaging can provide chemical shift images of hyperpolarized (13)C-labeled compounds in vivo with relatively high spatial resolution and moderate spectral resolution. The increased signal-to-noise ratio of this 3D technique will enable the detection of hyperpolarized (13)C-labeled metabolites at lower concentrations as compared to a 2D technique.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app