Add like
Add dislike
Add to saved papers

In vitro growth and single-leaf photosynthetic response of Cymbidium plantlets to super-elevated CO2 under cold cathode fluorescent lamps.

To examine the effectiveness of super-elevated (10,000 micromol mol(-1)) CO(2) enrichment under cold cathode fluorescent lamps (CCFL) for the clonal propagation of Cymbidium, plantlets were cultured on modified Vacin and Went (VW) medium under 0, 3,000 and 10,000 micromol mol(-1) CO(2) enrichment and two levels of photosynthetic photon flux density (PPFD, 45 and 75 micromol m(-2) s(-1)). Under high PPFD, 10,000 micromol mol(-1) CO(2) increased root dry weight and promoted shoot growth. In addition, a decrease in photosynthetic capacity and chlorosis at leaf tips were observed. Rubisco activity and stomatal conductance of these plantlets were lower than those of plantlets at 3,000 micromol mol(-1) CO(2) under high PPFD, which had a higher photosynthetic capacity. On the other hand, plantlets on Kyoto medium grown in 10,000 micromol mol(-1) CO(2) under high PPFD had a higher photosynthetic rate than those on modified VW medium; no chlorosis was observed. Furthermore, growth of plantlets, in particular the roots, was remarkably enhanced. This result indicates that a negative response to super-elevated CO(2) under high PPFD could be improved by altering medium components. Super-elevated CO(2) enrichment of in vitro-cultured Cymbidium could positively affect the efficiency and quality of commercial production of clonal orchid plantlets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app