Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

vHNF1 functions in distinct regulatory circuits to control ureteric bud branching and early nephrogenesis.

Development 2010 January
Mouse metanephric kidney development begins with the induction of the ureteric bud (UB) from the caudal portion of the Wolffian duct by metanephric mesenchymal signals. While the UB undergoes branching morphogenesis to generate the entire urinary collecting system and the ureter, factors secreted by the UB tips induce surrounding mesenchymal cells to convert into epithelia and form the nephrons, the functional units of the kidney. Epithelial branching morphogenesis and nephrogenesis are therefore tightly orchestrated; defects in either of these processes lead to severe kidney phenotypes ranging from hypoplasia to complete aplasia. However, the underlying regulatory networks have been only partially elucidated. Here, we identify the transcription factor vHNF1 (HNF1beta) as a crucial regulator of these early developmental events. Initially involved in timing outgrowth of the UB and subsequent branching, vHNF1 is also required for nephric duct epithelial maintenance, Müllerian duct formation and early nephrogenesis. Mosaic analyses further suggest a cell-autonomous requirement for vHNF1 in the acquisition of a specialized tip domain and branching morphogenesis. vHNF1 exerts these intricate functions at least in part through the direct control of key regulatory molecules involved in different aspects of early kidney development. Notably, vHNF1 acting directly upstream of Wnt9b appears to orchestrate Wnt signaling action in the mesenchymal-epithelial transitions underlying the initiation of nephrogenesis. These results demonstrate that vHNF1 is an essential transcriptional regulator that, in addition to the known later functions in normal duct morphogenesis, plays a crucial role during the earliest stages of urogenital development and provide novel insights into the regulatory circuits controlling events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app