Journal Article
Research Support, N.I.H., Extramural
Review
Add like
Add dislike
Add to saved papers

New insights into epithelial-mesenchymal transition in kidney fibrosis.

Epithelial-mesenchymal transition (EMT), a process by which differentiated epithelial cells undergo a phenotypic conversion that gives rise to the matrix-producing fibroblasts and myofibroblasts, is increasingly recognized as an integral part of tissue fibrogenesis after injury. However, the degree to which this process contributes to kidney fibrosis remains a matter of intense debate and is likely to be context-dependent. EMT is often preceded by and closely associated with chronic interstitial inflammation and could be an adaptive response of epithelial cells to a hostile or changing microenvironment. In addition to tubular epithelial cells, recent studies indicate that endothelial cells and glomerular podocytes may also undergo transition after injury. Phenotypic alteration of podocytes sets them in motion to functional impairment, resulting in proteinuria and glomerulosclerosis. Several intracellular signal transduction pathways such as TGFbeta/Smad, integrin-linked kinase (ILK) and Wnt/beta-catenin signaling are essential in controlling the process of EMT and presently are potential targets of antifibrotic therapy. This review highlights the current understanding of EMT and its underlying mechanisms to stimulate further discussion on its role, not only in the pathogenesis of renal interstitial fibrosis but also in the onset of podocyte dysfunction, proteinuria, and glomerulosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app