JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Solid-phase extraction of organic compounds in atmospheric aerosol particles collected with the particle-into-liquid sampler and analysis by liquid chromatography-mass spectrometry.

Talanta 2010 January 16
Atmospheric aerosol particles, collected with the particle-into-liquid sampler at SMEARII station in Finland in mid-August 2007, were analysed for biogenic acids. The sample pretreatment method, comprising solid-phase extraction with anion exchange and hydrophilic-lipophilic balance materials, was optimized. Extraction efficiencies of solid-phase extraction from 10 and 20ml samples were about 100%, with average relative standard deviation of 8.9%, in concentration range from 12.5 to 50ng/ml of the acid. Extraction of aldehydes was less successful, with efficiencies from 69 to 163% and average 10% deviation. Pretreated samples were analysed by reversed phase high performance liquid chromatography with ion trap mass spectrometric detection. Limits of detection achieved for organic acids with the analytical procedure developed ranged from 9 to 27microg/l of extracted sample, while limits of quantitation were from 31 to 90microg/l. Oxidation with ozone was used for the preparation of the acid of beta-caryophyllene (beta-caryophyllinic acid), which was also studied in aerosol samples. MS(2) experiments were used to confirm the identification of trans-pinic, trans-pinonic and beta-caryophyllinic acids. Azelaic, hexadecanoic, cis-pinonic, and cis- and trans-pinic acids were quantitated in the samples with use of authentic standards, while the concentrations of trans-pinonic and beta-caryophyllinic acids were determined with cis-pinonic acid as surrogate. Also, the contribution of beta-caryophyllene oxidation products to aerosol organic carbon was evaluated. Aldehydes could not be analysed in real samples due to the insufficient extraction. The particle-into-liquid sampler proved to be suitable for the collection of aerosol particles for the elucidation of daily and diurnal variation of selected species. The optimized sample pretreatment, together with the analysis method, offer a promising approach for the study of aerosol chemical composition, where artifact formation is minimal and time resolution is good.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app