JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Lung perfusion and chest wall configuration is altered by glossopharyngeal breathing.

Glossopharyngeal insufflation is used by competitive breath-hold divers to increase lung gas content above baseline total lung capacity (TLC) in order improve performance. Whilst glossopharyngeal insufflation is known to induce hypotension and tachycardia, little is known about the effects on the pulmonary circulation and structural integrity of the thorax. Six male breath-hold divers were studied. Exhaled lung volumes were measured before and after glossopharyngeal insufflation. On two study days, subjects were studied in the supine position at baseline TLC and after maximal glossopharyngeal insufflation above TLC. Tc 99(m) labelled macro-aggregated albumin was injected and a computed tomography (CT) scan of the thorax was performed during breath-hold. Single photon emission CT images determined flow and regional deposition. Registered CT images determined change in the volume of the thorax. CT and perfusion comparisons were possible in four subjects. Lung perfusion was markedly diminished in areas of expanded lung. 69% of the increase in expired lung volume was via thoracic expansion with a caudal displacement of the diaphragm. One subject who was not proficient at glossopharyngeal insufflation had no change in CT appearance or lung perfusion. We have demonstrated areas of hyperexpanded, under perfused lung created by glossopharyngeal insufflation above TLC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app