Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Design, expression and characterization of recombinant hybrid peptide Attacin-Thanatin in Escherichia coli.

Antimicrobial peptides will be attractive and potential candidates as peptide drugs because of their efficient action against microbes and low toxicity to mammal cells. To improve their antibacterial activity, some modifications needs to be made. In this research, the hybrid peptide gene Attacin-Thanatin with 642 bp in length with preferred codons of E. coli was generated using the technology of Gene splicing by overlap extension. The gene was inserted in-frame into E. coli expression plasmid pET-32a (+) and induced to express in E. coli Rosetta. The recombinant protein was partial purified and its biological activity was determined. Analysis of the E. coli Rosetta induced with IPTG revealed that the molecular weight of fusion protein was approximately 41.8 kDa, which perfectly matched the mass calculated from the amino acid sequence. Biological activity detection showed that this peptide effectively inhibited the growth of the test bacteria including E. coli DH5α, E. coli BL21 (DE3), Salmonella choleraesuis and Staphylococcus aureus. Among these bacteria, the Gram-negative E. coli was the most sensitive. Furthermore, there was minor hemolysis activity for porcine red blood cells. So, the results indicated that the hybrid peptide Attacin-Thanatin could be served as a promising candidate for the chemical antibiotics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app