JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

3-Ketosteroid 9alpha-hydroxylase is an essential factor in the pathogenesis of Mycobacterium tuberculosis.

Mycobacterium tuberculosis H37Rv contains the kshA (Rv3526) and kshB (Rv3571) genes, encoding 3-ketosteroid 9alpha-hydroxylase (KSH). Consistent with their predicted roles, the DeltakshA and DeltakshB deletion mutants of M. tuberculosis H37Rv were unable to use cholesterol and 4-androstene-3,17-dione as primary carbon and energy sources. Interestingly, DeltakshA and DeltakshB mutants were also unable to metabolize the steroid substrate 5alpha-androstane-3,17-dione, whereas wild-type M. tuberculosis H37Rv could. The deletion of either of these genes lead to rapid death of the microorganism in murine infection models and in macrophages, showing that kshA and kshB are essential factors for M. tuberculosis pathogenesis. Penta-acylated trehalose (PAT) biosynthesis was altered in the DeltakshB mutant, but not the DeltakshA mutant. The DeltakshB mutant synthesizes all other types of lipids. The DeltakshB mutant had a thickened outer layer in its cell wall. KshB thus appears to be involved in multiple processes, probably as a reductase of different oxygenases. We conclude that an impaired 3-ketosteroid 9alpha-hydroxylase activity is the cause of the highly attenuated phenotype of our M. tuberculosis H37Rv mutants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app