CASE REPORTS
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Severe respiratory phenotype caused by a de novo Arg528Gly mutation in the CACNA1S gene in a patient with hypokalemic periodic paralysis.

Hypokalemic periodic paralysis (HOKPP) is a rare disorder characterized by episodic muscle weakness with hypokalemia. Mutations in the CACNA1S gene, which encodes the alpha 1-subunit of the skeletal muscle L-type voltage-dependent calcium channel, have been reported to be mainly responsible for HOKPP. The paralytic attacks generally spare the respiratory muscles and the heart. Here, we report the case of a 16-year-old boy who presented with frequent respiratory insufficiency during the severe attacks. Mutational analysis revealed a heterozygous c.1582C>G substitution in the CACNA1S gene, leading to an Arg528Gly mutation in the protein sequence. The parents were clinically unaffected and did not show a mutation in the CACNA1S gene. A de novo Arg528Gly mutation has not previously been reported. The patient described here presents the unique clinical characteristics, including a severe respiratory phenotype and a reduced susceptibility to cold exposure. The patient did not respond to acetazolamide and showed a marked improvement of the paralytic symptoms on treatment with a combination of spironolactone, amiloride, and potassium supplements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app