Add like
Add dislike
Add to saved papers

On the XeF+/H2O system: synthesis and characterization of the xenon(II) oxide fluoride cation, FXeOXeFXeF+.

The reported synthesis of the H(2)OF(+) cation as a product of the oxidative fluorination of H(2)O by [XeF][PnF(6)] (Pn = As, Sb) in HF solution has been reinvestigated. The system exhibits complex equilibria, producing two new Xe(II) compounds, [Xe(3)OF(3)][PnF(6)] and [H(3)O][PnF(6)] x 2 XeF(2), refuting the original claim for the synthesis of the H(2)OF(+) cation. Both compounds have been isolated and characterized by vibrational spectroscopy and single-crystal X-ray diffraction. The X-ray crystal structures of the [Xe(3)OF(3)][PnF(6)] salts contain the Z-shaped FXeOXeFXeF(+) cation, which represents the first example of an isolated Xe(II) oxide fluoride. The crystal structure of the [H(3)O][AsF(6)] x 2 XeF(2) adduct contains XeF(2) molecules that interact with the H(3)O(+) cations. The vibrational assignments for the Xe(3)OF(3)(+) cation have been made with the aid of quantum-chemical calculations and were confirmed by (18)O-enrichment, and the assignments for [H(3)O][AsF(6)] x 2 XeF(2) were confirmed by (2)D- and (18)O-enrichment. Quantum-chemical calculations have also been carried out for H(3)O(+) x nXeF(2) (n = 1-4) and have been used to interpret the X-ray crystal structure and vibrational spectra of [H(3)O][AsF(6)] x 2 XeF(2). The energy-minimized geometries and vibrational frequencies for HOF and H(2)OF(+) have been calculated, further disproving the original report of the H(2)OF(+) cation. Both FXeOH and FXeOH(2)(+) have also been computed and are viable intermediates in the proposed equilibria between XeF(+) and H(2)O that lead to the Xe(3)OF(3)(+) cation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app