JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

High glucose concentration leads to differential expression of tight junction proteins in human retinal pigment epithelial cells.

INTRODUCTION: One of the early features of diabetic retinopathy is the breakdown of the blood-retinal barrier (BRB) due to disruption of the tight junctions. Whereas impairment of the proteins involved in the disruption of the tight junctions of the internal BRB has been extensively studied, there is no information on the direct effect of high glucose concentration on the barrier function of the outer blood-retinal barrier (formed by the retinal pigment epithelium [RPE]). The aim of this study was to explore the effect of high glucose concentration on the expression of tight junction proteins (occludin, zonula occludens-1 [ZO-1] and claudin-1) in a human RPE line under two distinct glucose concentrations.

MATERIALS AND METHODS: An RPE cell line (ARPE-19) were cultured for 3 weeks in a medium supplemented with 10% fetal calf serum containing 5.5 mmol D-glucose (mimicking physiological conditions) or 25 mmol Dglucose (mimicking the hyperglycemia that occurs in diabetic patients). Occludin, ZO-1 and claudin-1 were studied by real-time polymerase chain reaction and Western blot at 14 and 21 days.

RESULTS: Occludin and ZO-1 mRNA levels and protein content were similar in cultures maintained at 5.5 mmol and 25 mmol of D-glucose. In contrast, high glucose concentration (25 mmol) induced a clear upregulation in claudin-1 mRNA expression and protein content at 21 days (mRNA level: 1.03 vs 2.29; protein content: 0.92 vs 1.14).

CONCLUSIONS: High glucose concentration leads to differential expression of tight junction proteins in ARPE-19 cells. In addition, our results suggest that the upregulation of claudin-1by glucose is involved in the increase of tight junction sealing function. The functional consequences and clinical applicability of these findings require further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app