CLINICAL TRIAL, PHASE II
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Late effects of conformal radiation therapy for pediatric patients with low-grade glioma: prospective evaluation of cognitive, endocrine, and hearing deficits.

PURPOSE: We conducted a prospective trial to evaluate late effects in pediatric patients with low-grade glioma (LGG) treated with conformal radiation therapy (CRT).

PATIENTS AND METHODS: Between August 1997 and August 2006, 78 pediatric patients with LGG (mean age, 9.7 years; standard deviation, +/-4.4 years) received 54 Gy of CRT with a 10-mm clinical target volume margin. Tumor locations were diencephalon (n = 58), cerebral hemisphere (n = 3), and cerebellum (n = 17). Baseline and serial evaluations were performed to identify deficits in cognition, endocrine function, and hearing. Deficits were correlated with clinical factors and radiation dose within specific normal tissue volumes.

RESULTS: Cognitive effects of CRT through 5 years after CRT correlated with patient age, neurofibromatosis type 1 status, tumor location and volume, extent of resection, and radiation dose. The effect of age exceeded that of radiation dose; patients younger than 5 years experienced the greatest decline in cognition. Before CRT, growth hormone (GH) secretion abnormality was diagnosed in 24% of tested patients, and 12% had precocious puberty. The 10-year cumulative incidence of GH replacement was 48.9%; of thyroid hormone replacement, 64.0%; of glucocorticoid replacement, 19.2%; and of gonadotropin-releasing hormone analog therapy, 34.2%. The mean +/- standard errors of the cumulative incidence of hearing loss at 10 years did not exceed 5.7% +/- 3.3% at any frequency.

CONCLUSION: To our knowledge, this is the largest series of prospectively followed children with LGG to undergo irradiation. Adverse effects are limited and predictable for most patients; however, this study provides additional evidence that CRT should be delayed for young patients and identifies the potential benefits of reducing radiation dose to normal brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app