JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

DIXDC1 targets p21 and cyclin D1 via PI3K pathway activation to promote colon cancer cell proliferation.

Cancer Science 2009 October
DIXDC1 is the human homolog of Ccd1, a recently identified DIX domain containing protein in zebrafish. It is a positive regulator in the Wnt signaling pathway functioning downstream of Wnt and upstream of Axin. Since Wnt pathway activation is correlated with human colon cancer formation and progression, the biological role of DIXDC1 in human colon cancer was examined. In the current study, up-regulation of DIXDC1 protein was detected in human colorectal adenocarcinoma tissues and was found to be correlated well with high cell proliferation index. Ectopic over-expression of DIXDC1 resulted in increased cell proliferation in vitro and accelerated tumorigenesis on nude mice in vivo. We also showed that DIXDC1 promoted G0/G1 to S phase transition concomitantly with up-regulation of cyclin D1 and down-regulation of p21 protein. DIXDC1 over-expression cells showed activation of the PI3K/AKT pathway. Both siRNA knockdown of DIXDC1 and blocking the PI3K pathway using a specific inhibitor caused G1/S phase arrest, as well as down-regulation of cyclin D1 and up-regulation of p21 in DIXDC1 over-expression colon cancer cells. Collectively, this study demonstrates that over-expression of DIXDC1 might target p21 and cyclin D1 to promote colon cancer cell proliferation and tumorigenesis at least partially through activation of the PI3K/Akt pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app