JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Pediatric organ dose measurements in axial and helical multislice CT.

An anthropomorphic pediatric phantom (5-yr-old equivalent) was used to determine organ doses at specific surface and internal locations resulting from computed tomography (CT) scans. This phantom contains four different tissue-equivalent materials: Soft tissue, bone, brain, and lung. It was imaged on a 64-channel CT scanner with three head protocols (one contiguous axial scan and two helical scans [pitch = 0.516 and 0.984]) and four chest protocols (one contiguous axial scan and three helical scans [pitch = 0.516, 0.984, and 1.375]). Effective mA s [= (tube current x rotation time)/pitch] was kept nearly constant at 200 effective mA s for head and 290 effective mA s for chest protocols. Dose measurements were acquired using thermoluminescent dosimeter powder in capsules placed at locations internal to the phantom and on the phantom surface. The organs of interest were the brain, both eyes, thyroid, sternum, both breasts, and both lungs. The organ dose measurements from helical scans were lower than for contiguous axial scans by 0% to 25% even after adjusting for equivalent effective mA s. There was no significant difference (p > 0.05) in organ dose values between the 0.516 and 0.984 pitch values for both head and chest scans. The chest organ dose measurements obtained at a pitch of 1.375 were significantly higher than the dose values obtained at the other helical pitches used for chest scans (p < 0.05). This difference was attributed to the automatic selection of the large focal spot due to a higher tube current value. These findings suggest that there may be a previously unsuspected radiation dose benefit associated with the use of helical scan mode during computed tomography scanning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app