Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A caspase-6 and anti-HER2 antibody chimeric tumor-targeted proapoptotic molecule decreased metastasis of human osteosarcoma.

Human growth factor receptor-2 (HER2), overexpressed as a result of gene amplification, is detected in 20-40% of patients with breast, ovarian, endometrial, gastric, bladder, prostate, or lung cancers, correlated to metastasis of many tumors, and considered to be a poor prognostic indicator for these tumors. However, the data was controversial for HER2 overexpression and the prognosis of osteosarcoma, which is the most common primary malignant bone tumor, presents a therapeutic challenge in medical oncology due to its metastasis and poor response to current treatments. Previously, we reported that the immunocasp-6 gene fused by a HER2-specific single-chain antibody with domain II of Pseudomonas exotoxin A (PEA) and the 5' end of the truncated active caspase-6 could selectively suppress the HER2-positive tumor growth. In this study, we extend its application. We first confirmed the higher HER2 expression on the surface of metastatic osteosarcoma SOSP-9607(E10) cells, which then be proved specifically addicted to immunocasp-6-induced cells killing in vitro. Thereafter, the efficacy of immunocasp-6 was tested in an osteosarcoma lung metastasis mouse model using intramuscular (i.m.) injections of liposome-encapsulated vectors. Our results showed that the expression of the immunocasp-6 gene not only significantly prolonged animal's survival, but also greatly inhibited tumor metastasis. Thereby, our strategy suggests an alternative approach to treating HER2/neu-positive osteosarcoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app