JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies.

How biodiversity is generated and maintained underlies many major questions in evolutionary biology, particularly relating to the tempo and pattern of diversification through time. Molecular phylogenies and new analytical methods provide additional tools to help interpret evolutionary processes. Evolutionary rates in lineages sometimes appear punctuated, and such "explosive" radiations are commonly interpreted as adaptive, leading to causative key innovations being sought. Here we argue that an alternative process might explain apparently rapid radiations ("broom-and-handle" or "stemmy" patterns seen in many phylogenies) with no need to invoke dramatic increase in the rate of diversification. We use simulations to show that mass extinction events can produce the same phylogenetic pattern as that currently being interpreted as due to an adaptive radiation. By comparing simulated and empirical phylogenies of Australian and southern African legumes, we find evidence for coincident mass extinctions in multiple lineages that could have resulted from global climate change at the end of the Eocene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app