JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Proliferative effect of Apidra (insulin glulisine), a rapid-acting insulin analogue on mammary epithelial cells.

The structural modification of insulin results in the generation of insulin analogues that show altered binding affinities to the insulin receptor and/or the IGF-I receptor, and as a consequence insulin analogues may have altered mitogenic potency. We analysed the proliferative effect of the rapid-acting insulin analogue Apidra (insulin glulisine) on mammary epithelial cells. We show that Apidra and Actrapid (recombinant human insulin) have similar proliferative effects on benign MCF10A and tumorigenic MCF7 cells and on epithelial cells of mouse mammary gland. Whereas Apidra and Actrapid induced similar activation of Erk1/2, activation of Akt/PKB by Apidra was significantly weaker compared to regular insulin. As AKT/PKB, an effector of the phosphoinositide 3-kinase pathway, mediates metabolic effects of insulin, we studied induction of hexokinase-2 in MCF7 cells and hexokinase-2 and hexokinase-4 in HepG2 cells by Actrapid and Apidra. Both genes were not significantly induced by Actrapid and Apidra in these cell lines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app