Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Supramolecular assemblies of amphiphilic homopolymers.

Amphiphilic molecules self-assemble in solvents because of the differential solvation of the hydrophilic and lipophilic functionalities. Small-molecule surfactants have long been known to form micelles in water that can solubilize lipophilic guest molecules in their water-excluded interior. Polymeric surfactants based on block copolymers are also known to form several types of aggregates in water owing either to the mutual incompatibility of the blocks or better solvation of one of the blocks by the solvent. Incorporating amphiphilicity at smaller length scales in polymers would provide an avenue to capture the interesting properties of macromolecules and fine tune their supramolecular assemblies. To address this issue, we designed and synthesized amphiphilic homopolymers containing hydrophilic and lipophilic functionalities in the monomer. Such a polymer can be imagined to be a string of small-molecule surfactants tethered together such that the hydrophilic and lipophilic functionalities are located on opposite faces, rendering the assemblies facially amphiphilic. This feature article describes the self-assembly of our amphiphilic homopolymers in polar and apolar solvents. These homopolymers not only form micelles in water but also form inverse micelles in organic solvents. Subtle changes to the molecular structure have been demonstrated to yield vesicles in water and inverted micelles in organic solvents. The characterization of these assemblies and their applications in separations, catalysis, and sensing are described here.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app