JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Soluble HLA/peptide monomers cross-linked with co-stimulatory antibodies onto a streptavidin core molecule efficiently stimulate antigen-specific T cell responses.

Soluble MHC-peptide complexes, commonly referred to as tetramers, have been shown to induce strong cross-linking of TCR and CD8, resulting in a vigorous activation followed by a rapid non-apoptotic CD8(+) T cell death. This has limited tetramer use for antigen-specific T cells isolation and cloning, as sorted tetramer positive cells were shown to possess compromised functional integrity. Here we show that the cross-linking of a secondary co-stimulatory signal into oligomeric MHC:peptide complexes prevents such cell death, and in contrast strongly stimulates antigen-specific T cell responses. Such soluble antigen-presenting complexes (sAPCs) containing MHC:peptide complexes linked to either anti-CD27 or anti-CD28 antibodies were capable of priming and expanding HLA-A*0201 restricted CMV specific T cells and also of generating functional HLA-A*0301 restricted BCR/ABL-specific T cell responses. These sAPCs constitute an encouraging alternative method for generating antigen-specific T cells that could be applied to a variety of antigens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app