JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Superoxide anions and hydrogen peroxide inhibit proliferation of activated rat stellate cells and induce different modes of cell death.

BACKGROUND: In chronic liver injury, hepatic stellate cells (HSCs) proliferate and produce excessive amounts of connective tissue causing liver fibrosis and cirrhosis. Oxidative stress has been implicated as a driving force of HSC activation and proliferation, although contradictory results have been described.

AIM: To determine the effects of oxidative stress on activated HSC proliferation, survival and signalling pathways.

METHODS: Serum-starved culture-activated rat HSCs were exposed to the superoxide anion donor menadione (5-25 micromol/L) or hydrogen peroxide (0.2-5 mmol/L). Haem oxygenase-1 mRNA expression, glutathione status, cell death, phosphorylation of mitogen-activated protein (MAP) kinases and proliferation were investigated.

RESULTS: Menadione induced apoptosis in a dose- and time-dependent, but caspase-independent manner. Hydrogen peroxide induced necrosis only at extremely high concentrations. Both menadione and hydrogen peroxide activated Jun N-terminal kinase (JNK) and p38. Hydrogen peroxide also activated extracellular signal-regulated protein. Menadione, but not hydrogen peroxide, reduced cellular glutathione levels. Inhibition of JNK or supplementation of glutathione reduced menadione-induced apoptosis. Non-toxic concentrations of menadione or hydrogen peroxide inhibited platelet-derived growth factor- or/and serum-induced proliferation.

CONCLUSION: Reactive oxygen species (ROS) inhibit HSC proliferation and promote HSC cell death in vitro. Different ROS induce different modes of cell death. Superoxide anion-induced HSC apoptosis is dependent on JNK activation and glutathione status.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app