Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Early termination of spiral wave reentry by combined blockade of Na+ and L-type Ca2+ currents in a perfused two-dimensional epicardial layer of rabbit ventricular myocardium.

BACKGROUND: Modification of spiral wave (SW) reentry by antiarrhythmic drugs is a central issue to be challenged for better understanding of their benefits and risks.

OBJECTIVE: We investigated the effects of pilsicainide and/or verapamil, which block sodium and L-type calcium currents (I(Na) and I(Ca,L)), respectively, on SW reentry.

METHODS: A two-dimensional epicardial ventricular muscle layer was created in rabbit hearts by cryoablation (n = 32), and action potential signals were analyzed by high-resolution optical mapping.

RESULTS: During constant stimulation, pilsicainide (3-5 microM) caused a frequency-dependent decrease of conduction velocity (CV; by 20%-54% at 5 Hz) without affecting action potential duration (APD). Verapamil (3 microM) caused APD shortening (by 16% at 5 Hz) without affecting CV. Ventricular tachycardias (VTs) that were induced were more sustained in the presence of either pilsicainide or verapamil. The incidence of sustained VTs (>30 s)/all VTs per heart was 58% +/- 9% for 5 microM pilsicainide vs. 22% +/- 9% for controls and 62% +/- 10% for 3 microM verapamil vs. 22% +/- 8% for controls. The SWs with pilsicainide were characterized by slower rotation around longer functional block lines (FBLs), whereas those with verapamil were characterized by faster rotation around shorter FBLs. Combined application of 3 microM pilsicainide and 3 microM verapamil resulted in early termination of VTs (sustained VTs/all VTs per heart: 2% +/- 2% vs. 29% +/- 9% for controls); SWs showed extensive drift and decremental conduction, leading to their spontaneous annihilation.

CONCLUSION: Blockade of either I(Na) or I(Ca,L) stabilizes SWs in a two-dimensional epicardial layer of rabbit ventricular myocardium to help their persistence, whereas blockade of both currents destabilizes SWs to facilitate their termination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app