JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of vagal innervation on pulmonary surfactant system during fetal development.

Vagally mediated afferent feedback and compliant lungs (surfactant system) play vital roles in the establishment of adequate alveolar ventilation and pulmonary gas exchange at birth. Although the significance of vagal innervation in the establishment of normal breathing patterns is well recognized, the precise role of lung innervation in the maturation of the surfactant system remains unclear. The specific aim of the present study was to investigate whether vagal denervation compromises the surfactant system during fetal development. Experiments were performed on 12 time-dated fetal sheep: 8 underwent cervical vagal denervation, and 4 were sham operated. Vagal denervation was performed at 110-113 days gestation. Fetal lambs were instrumented in utero to record arterial pH and blood-gas tensions. The animals were delivered by cesarean section under general anesthesia between 130 and 133 days gestation (term approximately 147 days). Lung samples were collected for wet-to-dry ratios, light and electron microscopy, and overall lung morphology. In addition, total proteins, total phospholipids, and surfactant proteins A and B were analyzed in both lung tissue and bronchoalveolar lavage fluid. Vagal denervation had no effect on alveolar architecture, including type II cells or the morphology of lamellar bodies within them. Furthermore, surfactant proteins A and B and total phospholipids were similar in lung tissue and bronchoalveolar lavage fluid between the two groups. A significant correlation was observed between circulating cortisol concentrations and surfactant proteins in the bronchoalveolar lavage fluid and lung tissue. We provide definitive evidence that vagal innervation at midgestation is not required for maturation of the pulmonary surfactant system during fetal development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app