Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Remarkable blue shifts of C-H and N-H stretching frequencies in the interaction of monosubstituted formaldehyde and thioformaldehyde with nitrosyl hydride.

Weak interactions of monosubstituted formaldehydes and thioformaldehydes with nitrosyl hydride were investigated by using ab initio MO calculations at the MP2/aug-cc-pVTZ level. Thirty two equilibrium structures having different complex forms were located on the corresponding potential energy surfaces (all having C(s) symmetry). Obtained binding energies, which include both ZPE and BSSE corrections, range from 7 to 14 kJ x mol(-1) and 6 to 12 kJ x mol(-1) for complexes of substituted formaldehydes and thioformaldehydes, respectively. In each geometrical structure, the (XCHO,HNO) complex is consistently more stable than the (XCHS,HNO) complex. The H-bond strength significantly increases when one H atom is replaced by a methyl group in both formaldehyde and thioformaldehyde. When replacing H by a halogen atom, the binding energy tends to decrease. It is remarkable that all the C-H and N-H bonds are shortened upon complexation, resulting in an increase of their stretching frequencies. Furthermore, the blue shifts are consistently observed for the interacting N-H bonds in N-H...X, Z, with X = F, Cl, Br, and Z = O, S; such contraction of a covalent N-H bond is extremely rare. In addition, the N-H bond length contraction and its frequency blue shift in the N-H...S complex have been revealed for the first time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app