Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Type III secretion system 1 of Vibrio parahaemolyticus induces oncosis in both epithelial and monocytic cell lines.

Microbiology 2009 March
The Vibrio parahaemolyticus type III secretion system 1 (T3SS1) induces cytotoxicity in mammalian epithelial cells. We characterized the cell death phenotype in both epithelial (HeLa) and monocytic (U937) cell lines following infection with V. parahaemolyticus. Using a combination of the wild-type strain and gene knockouts, we confirmed that V. parahaemolyticus strain NY-4 was able to induce cell death in both cell lines via a T3SS1-dependent mechanism. Bacterial contact, but not internalization, was required for T3SS1-induced cytotoxicity. The mechanism of cell death involves formation of a pore structure on the surface of infected HeLa and U937 cells, as demonstrated by cellular swelling, uptake of cell membrane-impermeable dye and protection of cytotoxicity by osmoprotectant (PEG3350). Western blot analysis showed that poly ADP ribose polymerase (PARP) was not cleaved and remained in its full-length active form. This result was evident for seven different V. parahaemolyticus strains. V. parahaemolyticus-induced cytotoxicity was not inhibited by addition of the pan-caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK) or the caspase-1 inhibitor N-acetyl-tyrosyl-valyl-alanyl-aspartyl-aldehyde (Ac-YVAD-CHO); thus, caspases were not involved in T3SS1-induced cytotoxicity. DNA fragmentation was not evident following infection and autophagic vacuoles were not observed after monodansylcadaverine staining. We conclude that T3SS1 of V. parahaemolyticus strain NY-4 induces a host cell death primarily via oncosis rather than apoptosis, pyroptosis or autophagy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app